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Abstract

The transmission of force within granular materials is sensitive to local particle arrangements, and because of this

strong dependence, contact forces will usually be distributed in a complex, non-uniform manner. Load is transmitted by

relatively rigid, heavily stressed chains of particles which form a sparse network of ‘‘strong’’ contacts carrying greater

than average normal contact forces. The remaining groups of particles, which separate the strong force chains, are only

lightly loaded. Based on computer simulations, we show that this complexity in three-dimensional granular materials

can be greatly resolved by considering a single, gross measure of the anisotropic fabric distribution of strong contacts.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The transmission of force within unbonded particulate materials occurs only through the contacts
among particles, but each contact force is highly sensitive to the local arrangement of surrounding particles

(Drescher, 1972; Oda and Konishi, 1974; Liu et al., 1995; Howell et al., 1999; Mueth et al., 2000). Because

of this strong dependence on particle arrangement, contact forces will usually be distributed in a complex,

non-uniform manner, even when a homogeneous assembly of particles is subjected to uniform loading. This

complex behavior is revealed in the photoelastic studies of two-dimensional disks reported by several

investigators (Drescher, 1972; Oda and Konishi, 1974; Liu et al., 1995; Howell et al., 1999). The inho-

mogeneous distribution of optical fringe patterns that are observed in these studies, even for a uniformly

applied load, shows that the load is transmitted by relatively rigid, heavily stressed chains of particles which
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form a sparse network of contacts, transmitting normal forces that are greater than the average. The

remaining groups of particles, which separate the strong force chains, are only lightly loaded.

Although we are far from achieving a consensus on the nature of the distribution of contact forces in

granular media or a perfect physical model to capture their micro-mechanics, some revealing results are
found in recent numerical simulations on two-dimensional circular (Radjai et al., 1996, 1997, 1998; Radjai

and Wolf, 1998) and three-dimensional spherical systems of particles under quasi-static loading (Radjai and

Wolf, 1998; Thornton and Antony, 1998; Radjai et al., 1999; Antony, 2000). These studies demonstrate that

the normal components of contact force provide the major contribution to the deviatoric stress and that the

spatial distribution of contact forces can be divided into two sub-networks: (i) contacts carrying less than

the average force (forming weak force chains), and (ii) contacts carrying greater than the average force

(forming strong force chains). The contribution of the strong force chains to the deviator stress is dominant.

These strong forces, carrying a greater than average normal contact force, are preferentially aligned in the
major principal stress direction. Contacts that slide are predominantly within the weak force chains and

they contribute primarily to the mean stress, with negligible contribution to the deviatoric stress. The weak

force chains play a role similar to a supporting matrix surrounding a solid backbone of the strong force

chains (Thornton and Antony, 1998; Radjai et al., 1999; Antony, 2000; Antony and Ghadiri, 2001). In the

present investigation, we probe the effect of particle shape on the interplay among contact signatures,

fabric, and bulk strength of three-dimensional particulate assemblies. We propose a simple fabric measure

that correlates closely with bulk strength.
2. Methods

The current observations are based upon numerical simulations of triaxial compression that employ

three assemblies of particles having similar densities, but with each assembly having a different particle
shape: either spherical, oblate, or prolate (Fig. 1). The oblate and prolate shapes are solids of revolution,

and more details of their numerical description can be found elsewhere (Wang et al., 1999; Kuhn, 2003).

The three cubic assemblies each contained 4096 particles in initially dense packings (ovoids with coordi-

nation numbers 9.0–9.2 and solid fraction 0.73; spheres with coordination number 5.6 and solid fraction

0.66). Particle sizes in each assembly ranged from between 0.5 and 1.35 of the mean size (Fig. 2). Ratios of

axial height to radial girth were randomly assigned to the oblate and prolate particles, within the ranges

0.65–0.85 (oblate) and 1.2–1.6 (prolate).

Slow, quasi-static triaxial compression simulations were carried out using the discrete element method
(DEM) (Cundall and Strack, 1979). The advantage of using DEM to study particulate materials is its

ability to give detailed information about the internal mechanics of large systems of particles, which we
Fig. 1. Diagrams of an (a) oblate particle, (b) prolate particle, and (c) construction of an oblate particle from two spheres and a middle

torus.



Fig. 3. Variation of deviator stress ratio q=p during triaxial compression for three particulate assemblies, each composed of different

particle shapes.
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Fig. 2. Cumulative distribution of particle diameters, measured at the particle girth.
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explore in the current work. The method models the interactions between contiguous particles as a
dynamic process, and the time evolution of the particles is advanced using an explicit central difference time

integration scheme. A simple force mechanism was employed between contacting particles. Linear nor-

mal and tangential contact springs were assigned equal stiffnesses, and the coefficient of contact friction was

0.5.

The cubic assemblies were initially random, isotropic, and homogeneous, and the initial contact

indentations were less than 0.02% of the particle size. During triaxial compression, the width of the

assembly was slowly reduced at a constant rate in the 1–1 direction, while maintaining constant normal

stresses, r22 and r33, along the 2–2 and 3–3 sides. This loading arrangement permitted dilation of a dense
assembly while it was being compressed in the single, 1–1 direction, which approximates the constant-

stress loading conditions attained with the use of a rubber membrane in standard geotechnical triaxial

tests, although we have used periodic boundaries. The loading was conducted slowly, so that the kinetic

energy associated with velocity fluctuations was, on average, about 0.01% of the elastic energy in the

contact springs. Fig. 3 shows the evolution of the three assemblies during the slow, progressive increase

of compressive strain ��11. The normalized strength q=p is a ratio of the deviator stress q ¼ r11 � r33 and

the mean stress p ¼ rkk=3. The strength curves for the oblate and prolate assemblies are quite similar, but

both have higher values than that of the sphere assembly, a characteristic that has been documented in
other studies (Rothenburg and Bathurst, 1992; Ouadfel and Rothenburg, 2001; Ng, 2001).
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3. Analysis

Although one would expect that both the contact force distribution and the contact fabric influence the

evolution of strength, this aspect of particulate materials is not yet well understood. As discussed earlier,
the contacts that slide are predominantly among the weak force chains and they contribute primarily to the

mean stress, whereas the strong force chains contribute to both the deviatoric and mean stress. Hence we

intend to evaluate the contribution of those contacts having larger forces and the evolution of their fabric

during deviatoric loading.

The average Cauchy stress �rij in a granular assembly can be directly computed as a sum of dyadic

products associated with its M contacts:
�rij ¼
1

V

X
pq2M

lpqi f
pq
j ; ð1Þ
where V is the assembly volume (Christoffersen et al., 1981). Each product is for a contact pq between

particles p and q, and the pair pq is an element in the set M of all contacts. Branch vector lpq connects a
reference point on particle p to a reference point on particle q; and fpq is the contact force exerted by q on p.
Each vector can be expressed as the product of scalar magnitudes and unit directions, or
�rij ¼
1

V

X
pq2M

‘pq f pq;nðmpq
i n

pq
j Þ

�
þ f pq;tðmpq

i t
pq
j Þ

�
; ð2Þ
where npq is the outward unit normal of particle p at contact pq, tpq is the unit tangent vector aligned with

the tangential component of contact force fpq;t, and mpq and ‘pq are the direction and length of branch vector
lpq:
fpq ¼ f pq;nnpq þ f pq;ttpq ð3aÞ
lpq ¼ ‘pqmpq: ð3bÞ
Thornton and his coworkers have measured the relative contributions of the normal and tangential contact

forces, f pq;n and f pq;t, toward the deviatoric stress �rij � �rkk=d in both two- and three-dimensional simula-

tions (d ¼ 2 or 3, as in Thornton and Barnes, 1986; Thornton and Antony, 1998). They found that the

contribution of the normal forces is dominant, with the tangential forces producing only about 10% of the

deviator stress. For the moment, we neglect the tangential forces and approximate the average stress �rij in

(2) as
�rij �
1

V

X
pq2M

‘pqf pq;n/pq
ij ð4Þ
with a contact fabric /pq
ij ¼ mpq

i n
pq
j associated with each pq contact.

On first sight, it might appear that �rij would closely correlate with the mean fabric – the average h/pq
ij i of

the M contacts. We found, however, that �rij and h/pq
ij i are poorly correlated, whether correlation is mea-

sured among assemblies composed of different particle shapes, or it is measured for a single assembly at

different stages of loading. This, perhaps, unfortunate result is due to cross-correlations among the ‘pq, f pq;n,

and /pq
ij in (4). As has been mentioned, larger contact forces are preferentially aligned in the direction of the

major principal (compressive) stress, which is closely aligned with the major eigenvector of fabric h/pq
ij i.

Larger contact forces also tend to occur among larger particles, for which the lengths ‘pq are greater. (The
coefficient of correlation between sets f pq;n and ‘pq is, indeed, greater than that between sets f pq;n and /pq

ij .)

A far better correlation between deviatoric stress and fabric is attained by admitting only the most heavily
loaded contacts, as defined below, in the computation of an average fabric. Recalling that weak force chains

contribute mainly to the mean stress, we rank and partition the M contacts into distinct subsets Ms,
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s ¼ 1; 2; . . . ;Ns, such thatM ¼
S
Ms. If the number Ns of subsets is sufficiently large, the average stress can

be closely approximated as
Fig. 4.

(b) thr
�rij �
1

V

XNs

s¼1
Msh‘MsihfMs;nih/Ms

ij i; ð5Þ
where averages are taken among the Ms contacts in each subset Ms. Both (4) and (5) are approximations of

the stress �rij, since we have excluded the contribution of the tangential contact force components. With a

selective partitioning of the contacts M into groups Ms, the sets f‘Msg, ffMs;ng, and f/Ms
ij g will be better

correlated, and the estimate (5) will be better than that in (4). We now describe the partitioning.

A conventional approach has been to partition the M contacts according to their orientations (i.e., their

fabrics /pq
ij , as in Oda, 1972; Bathurst and Rothenburg, 1990; Ouadfel and Rothenburg, 2001). We instead

partition the contacts by ranking them according to the magnitudes of their normal forces f pq;n, and we

assign a ranking parameter s 2 f1=M ; 2=M ; 3=M ; . . . ; 1g, or simply s 2 ½0; 1
, to each contact. For example,

a contact pq with ranking s ¼ 0:15 has a normal force f pq;n greater than 15% of the contact population, but

smaller than 85% of the population. The sum in (5) can then be written as
�rij �
M
V

Z 1

0

‘ðsÞf nðsÞ/ijðsÞds; ð6Þ
noting that the tangential contact forces f t have been neglected in this approximation. With this scheme,

the cumulative stress contribution ~rijðsÞ of those contacts having a ranking �s less than some value s 2 ½0; 1

can be computed as
~rijðsÞ ¼
M
V

Z s

0

lið�sÞfjð�sÞd�s: ð7Þ
4. Results

Our primary interest is in the deviatoric material response that was exhibited in the numerical simula-
tions, and for this purpose we track a single measure of the deviatoric stress: the deviator stress

q ¼ �r11 � �r33, also shown in Fig. 3. A corresponding deviator stress ~qðsÞ can be computed with (7) and
~qðsÞ ¼ ~r11ðsÞ � ~r33ðsÞ; ð8Þ

which is the cumulative contribution to the deviator stress q of those contacts having a ranking lower than
s. Fig. 4 shows the cumulative contribution ~qðsÞ of the ranked contacts to the full stress deviator q.
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ee particle shapes at strain � ¼ �0:01.
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Although difficult to distinguish (because some results overlay others), each plot is for three conditions. Fig.

4a shows the results for the triaxial compression of the sphere assembly at three strains (��11 ¼ 0:001, 0.01,
and 0.1); whereas, Fig. 4b shows the results for three particle shapes at the same strain (��11 ¼ 0:01). The
figure is further evidence that the 50% of most lightly loaded contacts (the weak chains, with s < 0:5)
contribute little to the deviatoric stress. We also found that the distribution of contact fabrics /ijðsÞ among
lightly loaded contacts (s < 0:5) can significantly change during triaxial loading. For this reason, the full,

averaged fabric h/pq
ij i correlates poorly with deviatoric stress. The results in Fig. 4 suggest, however, that
Fig. 5. Correlations among the fabric measure k and the deviator stress ratio q=p for three particle shapes. The same ratio

ak ¼ k=ðq=pÞ ¼ 0:25 has been used to scale the vertical axes in each plot: (a) spherical particles, (b) oblate particles and (c) prolate

particles.
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material fabric /ijðsÞ may be a good predictor of deviatoric stress, provided that we admit only the more

heavily loaded contacts in our averaging of the /pq
ij .

In this regard, we use an alternative, restricted average fabric h/pq
ij is>0:5, suspecting that the fabric of

those contacts with a normal force f n greater than the median (s > 0:5) carries more information about the
stress-bearing capacity of the material than the full average fabric h/pq

ij i ¼ h/pq
ij is>0. The deviator of the

restricted fabric measure is designated as k:
k ¼ h/pq
11is>0:5 � h/pq

33is>0:5 ¼
1

1� 0:5

Z 1

0:5

½/11ðsÞ � /33ðsÞ
ds; ð9Þ
where we take advantage of the axisymmetric conditions of the triaxial loading simulations, having

h/pq
22is>0:5 ¼ h/pq

33is>0:5. This single measure of fabric is, indeed, a superior predictor of the deviator stress
ratio q=p, as is shown in Fig. 5. Measured values of k are closely correlated with q=p for all three particle
shapes and at all strains. The ratio ak ¼ k=ðq=pÞ is, on average, about 0.25, and this ratio varies little with

the particle shape or with strain: the standard deviation of ak was only 0.016 across all conditions, although

its variation was larger at small strains.

We have chosen the single criteria s > 0:5 for computing an effective fabric h/pq
ij is>0, but we have found

that other, more restrictive criteria also lead to averaged fabrics that correlate well with the deviator stress.

(e.g., the simple selection criteria f pq;n > hf pq;ni includes the 35–45% of most heavily loaded contacts and is

also an excellent predictor of strength q=p). Our results show, however, that the fabric affects deviatoric
stress only through the more heavily loaded contacts in a particulate material.
5. Conclusion

The results of this study provide some promise that a simple fabric measure can be used to characterize

the evolution of stress in granular materials. Further studies are required to permit its more general use with

other loading paths and under unloading conditions, with more elongated and non-smooth particle shapes,

and with other contact characteristics.
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