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Influence of particle shape on granular contact signatures
and shear strength: new insights from simulations
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Abstract

The transmission of force within granular materials is sensitive to local particle arrangements, and because of this
strong dependence, contact forces will usually be distributed in a complex, non-uniform manner. Load is transmitted by
relatively rigid, heavily stressed chains of particles which form a sparse network of “strong” contacts carrying greater
than average normal contact forces. The remaining groups of particles, which separate the strong force chains, are only
lightly loaded. Based on computer simulations, we show that this complexity in three-dimensional granular materials
can be greatly resolved by considering a single, gross measure of the anisotropic fabric distribution of strong contacts.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The transmission of force within unbonded particulate materials occurs only through the contacts
among particles, but each contact force is highly sensitive to the local arrangement of surrounding particles
(Drescher, 1972; Oda and Konishi, 1974; Liu et al., 1995; Howell et al., 1999; Mueth et al., 2000). Because
of this strong dependence on particle arrangement, contact forces will usually be distributed in a complex,
non-uniform manner, even when a homogeneous assembly of particles is subjected to uniform loading. This
complex behavior is revealed in the photoelastic studies of two-dimensional disks reported by several
investigators (Drescher, 1972; Oda and Konishi, 1974; Liu et al., 1995; Howell et al., 1999). The inho-
mogeneous distribution of optical fringe patterns that are observed in these studies, even for a uniformly
applied load, shows that the load is transmitted by relatively rigid, heavily stressed chains of particles which
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form a sparse network of contacts, transmitting normal forces that are greater than the average. The
remaining groups of particles, which separate the strong force chains, are only lightly loaded.

Although we are far from achieving a consensus on the nature of the distribution of contact forces in
granular media or a perfect physical model to capture their micro-mechanics, some revealing results are
found in recent numerical simulations on two-dimensional circular (Radjai et al., 1996, 1997, 1998; Radjai
and Wolf, 1998) and three-dimensional spherical systems of particles under quasi-static loading (Radjai and
Wolf, 1998; Thornton and Antony, 1998; Radjai et al., 1999; Antony, 2000). These studies demonstrate that
the normal components of contact force provide the major contribution to the deviatoric stress and that the
spatial distribution of contact forces can be divided into two sub-networks: (i) contacts carrying less than
the average force (forming weak force chains), and (ii) contacts carrying greater than the average force
(forming strong force chains). The contribution of the strong force chains to the deviator stress is dominant.
These strong forces, carrying a greater than average normal contact force, are preferentially aligned in the
major principal stress direction. Contacts that slide are predominantly within the weak force chains and
they contribute primarily to the mean stress, with negligible contribution to the deviatoric stress. The weak
force chains play a role similar to a supporting matrix surrounding a solid backbone of the strong force
chains (Thornton and Antony, 1998; Radjai et al., 1999; Antony, 2000; Antony and Ghadiri, 2001). In the
present investigation, we probe the effect of particle shape on the interplay among contact signatures,
fabric, and bulk strength of three-dimensional particulate assemblies. We propose a simple fabric measure
that correlates closely with bulk strength.

2. Methods

The current observations are based upon numerical simulations of triaxial compression that employ
three assemblies of particles having similar densities, but with each assembly having a different particle
shape: either spherical, oblate, or prolate (Fig. 1). The oblate and prolate shapes are solids of revolution,
and more details of their numerical description can be found elsewhere (Wang et al., 1999; Kuhn, 2003).
The three cubic assemblies each contained 4096 particles in initially dense packings (ovoids with coordi-
nation numbers 9.0-9.2 and solid fraction 0.73; spheres with coordination number 5.6 and solid fraction
0.66). Particle sizes in each assembly ranged from between 0.5 and 1.35 of the mean size (Fig. 2). Ratios of
axial height to radial girth were randomly assigned to the oblate and prolate particles, within the ranges
0.65-0.85 (oblate) and 1.2-1.6 (prolate).

Slow, quasi-static triaxial compression simulations were carried out using the discrete element method
(DEM) (Cundall and Strack, 1979). The advantage of using DEM to study particulate materials is its
ability to give detailed information about the internal mechanics of large systems of particles, which we
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Fig. 1. Diagrams of an (a) oblate particle, (b) prolate particle, and (c) construction of an oblate particle from two spheres and a middle
torus.
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Fig. 2. Cumulative distribution of particle diameters, measured at the particle girth.
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Fig. 3. Variation of deviator stress ratio ¢/p during triaxial compression for three particulate assemblies, each composed of different
particle shapes.

explore in the current work. The method models the interactions between contiguous particles as a
dynamic process, and the time evolution of the particles is advanced using an explicit central difference time
integration scheme. A simple force mechanism was employed between contacting particles. Linear nor-
mal and tangential contact springs were assigned equal stiffnesses, and the coefficient of contact friction was
0.5.

The cubic assemblies were initially random, isotropic, and homogeneous, and the initial contact
indentations were less than 0.02% of the particle size. During triaxial compression, the width of the
assembly was slowly reduced at a constant rate in the 1-1 direction, while maintaining constant normal
stresses, 0y, and o33, along the 2-2 and 3-3 sides. This loading arrangement permitted dilation of a dense
assembly while it was being compressed in the single, 1-1 direction, which approximates the constant-
stress loading conditions attained with the use of a rubber membrane in standard geotechnical triaxial
tests, although we have used periodic boundaries. The loading was conducted slowly, so that the kinetic
energy associated with velocity fluctuations was, on average, about 0.01% of the elastic energy in the
contact springs. Fig. 3 shows the evolution of the three assemblies during the slow, progressive increase
of compressive strain —e;;. The normalized strength ¢/p is a ratio of the deviator stress ¢ = a1; — 033 and
the mean stress p = o1 /3. The strength curves for the oblate and prolate assemblies are quite similar, but
both have higher values than that of the sphere assembly, a characteristic that has been documented in
other studies (Rothenburg and Bathurst, 1992; Ouadfel and Rothenburg, 2001; Ng, 2001).
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3. Analysis

Although one would expect that both the contact force distribution and the contact fabric influence the
evolution of strength, this aspect of particulate materials is not yet well understood. As discussed earlier,
the contacts that slide are predominantly among the weak force chains and they contribute primarily to the
mean stress, whereas the strong force chains contribute to both the deviatoric and mean stress. Hence we
intend to evaluate the contribution of those contacts having larger forces and the evolution of their fabric
during deviatoric loading.

The average Cauchy stress 6, in a granular assembly can be directly computed as a sum of dyadic
products associated with its M contacts:

0ij :% PR M
pgeM
where V is the assembly volume (Christoffersen et al., 1981). Each product is for a contact pg between
particles p and ¢, and the pair pg is an element in the set .# of all contacts. Branch vector I connects a
reference point on particle p to a reference point on particle ¢g; and f* is the contact force exerted by g on p.
Each vector can be expressed as the product of scalar magnitudes and unit directions, or

N 1
o=y D e ) 4 ()] (2)
pqeM
where n is the outward unit normal of particle p at contact pg, t* is the unit tangent vector aligned with

the tangential component of contact force f*', and m* and ¢ are the direction and length of branch vector
P

4 = frange 4 fraigpd (3a)
P = Pm?. (3b)

Thornton and his coworkers have measured the relative contributions of the normal and tangential contact
forces, /7" and f7*, toward the deviatoric stress 6;; — oy /d in both two- and three-dimensional simula-
tions (d = 2 or 3, as in Thornton and Barnes, 1986; Thornton and Antony, 1998). They found that the
contribution of the normal forces is dominant, with the tangential forces producing only about 10% of the
deviator stress. For the moment, we neglect the tangential forces and approximate the average stress g;; in
(2) as

7y z%/ D g )
pqEM
with a contact fabric ¢/ = m“n’’ associated with each pg contact.

On first sight, it might appear that 6;; would closely correlate with the mean fabric — the average (¢7/) of
the M contacts. We found, however, that 6;; and (¢}) are poorly correlated, whether correlation is mea-
sured among assemblies composed of different particle shapes, or it is measured for a single assembly at
different stages of loading. This, perhaps, unfortunate result is due to cross-correlations among the #4, fP4",
and ¢} in (4). As has been mentioned, larger contact forces are preferentially aligned in the direction of the
major principal (compressive) stress, which is closely aligned with the major eigenvector of fabric ( ;;1>-
Larger contact forces also tend to occur among larger particles, for which the lengths ¢4 are greater. (The
coefficient of correlation between sets /7™ and ¢ is, indeed, greater than that between sets /7" and l.jq.)

A far better correlation between deviatoric stress and fabric is attained by admitting only the most heavily
loaded contacts, as defined below, in the computation of an average fabric. Recalling that weak force chains
contribute mainly to the mean stress, we rank and partition the M contacts into distinct subsets .#,
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s=1,2,...,N,, such that .# = |J .#,. If the number N, of subsets is sufficiently large, the average stress can
be closely approximated as

1 &
0y R DM, (5)
s=1

where averages are taken among the M, contacts in each subset .#,. Both (4) and (5) are approximations of
the stress 6;;, since we have excluded the contribution of the tangential contact force components. With a
selective partitioning of the contacts ./ into groups ./, the sets {¢:}, {f*=*}, and {¢;*} will be better
correlated, and the estimate (5) will be better than that in (4). We now describe the partitioning.

A conventional approach has been to partition the M contacts according to their orientations (i.c., their
fabrics (;Sf}f’, as in Oda, 1972; Bathurst and Rothenburg, 1990; Ouadfel and Rothenburg, 2001). We instead
partition the contacts by ranking them according to the magnitudes of their normal forces /7", and we
assign a ranking parameter s € {1/M,2/M,3/M,...,1}, or simply s € [0, 1], to each contact. For example,
a contact pg with ranking s = 0.15 has a normal force /7" greater than 15% of the contact population, but
smaller than 85% of the population. The sum in (5) can then be written as

oMot
0=y [ 60,6 (©

noting that the tangential contact forces f* have been neglected in this approximation. With this scheme,
the cumulative stress contribution &;(s) of those contacts having a ranking § less than some value s € [0, 1]
can be computed as

o) = [ 1668 )

4. Results

Our primary interest is in the deviatoric material response that was exhibited in the numerical simula-
tions, and for this purpose we track a single measure of the deviatoric stress: the deviator stress
q = 611 — 033, also shown in Fig. 3. A corresponding deviator stress g(s) can be computed with (7) and

q(s) = a1 (s) — 33(s), (8)

which is the cumulative contribution to the deviator stress g of those contacts having a ranking lower than
s. Fig. 4 shows the cumulative contribution g(s) of the ranked contacts to the full stress deviator g.

l T T T T I T T T T 1 Ll Ll Ll Ll T T T T
g I —€3, =0.001 = [ —— Spheres
2 [ -----€;,=001 1 2 [ ----Obae i
o | e —€,, =01 ] o [ e Prolate Fa
c u c J
805 1 SO05F /7
3 L ] 3 L ]
= i /7’ ] é i 5 i
g - a2 E o} - ‘,.y"’ -
) s C O

0 0.5 1 0 0.5 1

(@ (b)

Fig. 4. Cumulative contributions of the s-ranked contact forces to the full deviator stress ¢: (a) spherical particles at three strains and
(b) three particle shapes at strain e = —0.01.
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Although difficult to distinguish (because some results overlay others), each plot is for three conditions. Fig.
4a shows the results for the triaxial compression of the sphere assembly at three strains (—e;; = 0.001, 0.01,
and 0.1); whereas, Fig. 4b shows the results for three particle shapes at the same strain (—e;; = 0.01). The
figure is further evidence that the 50% of most lightly loaded contacts (the weak chains, with s < 0.5)
contribute little to the deviatoric stress. We also found that the distribution of contact fabrics ¢;;(s) among
lightly loaded contacts (s < 0.5) can significantly change during triaxial loading. For this reason, the full,
averaged fabric ((;’)f}f’ ) correlates poorly with deviatoric stress. The results in Fig. 4 suggest, however, that

“ x
s 03 =
S 2
= o
®© 2
2 0.2 £
e Qo
»n 0.1 §
0
0 0.02 0.04 0.06 0.08
Compressive strain, —€ {4
(@)
x
S g
) =
T 2
c
3 P
& 8
w
0 0.02 0.04 0.06 0.08
Compressive strain, —€ {4
(b)
0.5 ~
=
S 0.4 §
- o
-(% 0.3 %
) o
g 0.2 %
ok
0 1 I 1 l 1 l 1 0

0 0.02 0.04 0.06 0.08
Compressive strain, —€ 44

(c)
Fig. 5. Correlations among the fabric measure k¥ and the deviator stress ratio g/p for three particle shapes. The same ratio

o =k/(q/p) = 0.25 has been used to scale the vertical axes in each plot: (a) spherical particles, (b) oblate particles and (c) prolate
particles.
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material fabric ¢;;(s) may be a good predictor of deviatoric stress, provided that we admit only the more
heavily loaded contacts in our averaging of the ¢{7

In this regard, we use an alternative, restricted average fabric (¢/7) ., suspecting that the fabric of
those contacts with a normal force f” greater than the median (s > 0.5) carries more information about the
stress-bearing capacity of the material than the full average fabric (¢]/) = (¢77),.,. The deviator of the
restricted fabric measure is designated as £:

1
£= Bhos = (Bnos =7—g5 | 1#06) = d)ds, )
where we take advantage of the axisymmetric conditions of the triaxial loading simulations, having
(50 w05 = (953)~05- This single measure of fabric is, indeed, a superior predictor of the deviator stress
ratio ¢/p, as is shown in Fig. 5. Measured values of & are closely correlated with ¢/p for all three particle
shapes and at all strains. The ratio o, = k/(q/p) is, on average, about 0.25, and this ratio varies little with
the particle shape or with strain: the standard deviation of a; was only 0.016 across all conditions, although
its variation was larger at small strains.

We have chosen the single criteria s > 0.5 for computing an effective fabric (¢}/),.,, but we have found
that other, more restrictive criteria also lead to averaged fabrics that correlate well with the deviator stress.
(e.g., the simple selection criteria f74" > (f74") includes the 35-45% of most heavily loaded contacts and is
also an excellent predictor of strength ¢/p). Our results show, however, that the fabric affects deviatoric
stress only through the more heavily loaded contacts in a particulate material.

5. Conclusion

The results of this study provide some promise that a simple fabric measure can be used to characterize
the evolution of stress in granular materials. Further studies are required to permit its more general use with
other loading paths and under unloading conditions, with more elongated and non-smooth particle shapes,
and with other contact characteristics.
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